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Molecular Deformation in 3 : 4-5 : 6-Dibenzophenanthrene. 
By C .  A. COULSON and S. SENENT. 

[Reprint Order No. 51018.1 

Steric limitations prevent the molecule 3 : 4-5 : 6-dibenzophenanthrene 
from being planar. On the basis of a plausible potential function for out- 
of-plane displacements of the various atoms, the molecular deformation is 
calculated. Excellent agreement with McIntosh, Robertson, and Vand’s 
experimental values is obtained. The loss of resonance energy as a result of 
the deformation is estimated to be 18 kcal. mole-’. The total strain energy 
may be about 28 kcal. mole-l. 

RECENTLY one of us (Senent, Andes ReaZ SOC. ESP. Fis. Qzlim., 1954, 50, B, 337) calculated 
bond orders and resonance energy for 3 : 4-5 : 6-dibenzophenanthrene (I) by the method 
of molecular orbitals. As then stated a proper study of this molecule requires (a) the 
determination of its molecular diagram, on the hypothesis that it is planar, followed by (b)  
a study of its deformation. As shown, there is serious overcrowding between the hydrogen 
atoms numbered 28 and 29, and also between the carbon atoms numbered 6 and 7. It is 
generally found that non-bonded carbon atoms do not approach closer than 3.0 A, and that 
the shortest hydrogen-hydrogen distances in aliphatic hydrocarbon crystals (see, e.g., the 
accurate electron-diffraction values of B. K. Weinstein and 2. G. Pinsker, 3rd Internat. 
Congr. Crystall., Moscow, 1954,10,154) are 2.49-250 A. Now if the hexagons are approxi- 
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(a) Numbering used in this paper. 

(b ,  c) Standard organic chemical numberings (cf. Table). 

This numbering was chosen for convenience in description and 
mathematical analysis. 

mately regular, the distance &+7) will be about 1.4 A, so that all four atoms 0, c(,), H(28), 
w-1 in this region are well within the forbidden distances, if the molecule is assumed to be 
planar. It is clear that since c(6) and C(,) are too close together, no bending of the bonds 
6-28, 7-29 will remove the overcrowding. It is also clear that although this over- 
crowding could be relieved in principle by splaying-out the two ‘‘ legs ” uf the molecule in 
such a way that the system remained coplanar, this would involve considerable changes 
in bond lengths and bond angles. Some similar calculations for diphenyl by Longuet- 
Higgins and Coulson (briefly reported by Coulson in “ Quantum-Mechanical Methods in 
Valence Theory,” Office of Naval Research, U S A . ,  1951, p. 42) suggest that this type of 
relief of steric strain requires a good deal more energy than if it is achieved by buckling the 
molecule out of a plane. A buckled shape has in fact recently been discovered expen- 
mentally by McIntosh, Robertson, and Vand (Nature, 1952, 169, 322; J., 1954, 1661). It 
is reasonable, therefore, to suppose that the overcrowding in (I) is relieved by displace- 
ments of the various C and H atoms in a direction normal to the original undisturbed mole- 
cular plane. It is supported by the three- 
dimensional diagram of the molecule shown in Fig. 5 of the paper by McIntosh ei al. We 
shall show that by a simple application of the potential function for perpendicular dis- 
placements of the atoms of an aromatic hydrocarbon molecule, described in the preceding 
paper, it is possible to predict the details of the out-of-plane distortion with excellent 
fidelity. At the same time an estimate is obtained of the loss of resonance energy as a 
result of the deformation. 

This is the model adopted in the present paper. 
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Let us take the plane of the undistorted molecule as the plane z = 0, and suppose that 
in the distortion the atom r is displaced a perpendicular distance 2,. The resulting changes 
in bond lengths and angles are of the second order of small quantities, and may therefore be 
neglected, unless the 2, fluctuate rapidly from atom to atom. We further suppose that 
these displacements are the only ones which take place. The potential energy of the 
deformed molecule will be a function V(zl, . . . . z ? ~ )  of the co-ordinates z,. Presumably 
the equilibrium values of the zr will be such as minimise V subject to the van der Waals 
constraints in the region of atoms 6, 7, 28, and 29. In  order to proceed further, therefore, 
we must discuss (a) the analytical form of Y ,  and (b )  the limiting values of z6, z,, zZ8, and 

It is shown in the paper which precedes this that a satisfactory potential function can 
be devised, which will account for the out-of-plane vibration frequencies in ethylene, 
benzene, and naphthalene with the use of only two distinct force constants. Now the 
C-C and C-H bonds in our present molecule must evidently resemble those of benzene and 
naphthalene quite closely. We may therefore adopt this potential function and use i t  to 
define V .  Better agreement with experiment could no doubt be obtained if we chose a 
larger number of force constants, or even different values from those estimated from benzene ; 
but we shall be able to show that by adopting these values we are led to an excellent agree- 
ment with the experimentally measured deformation. And our calculations have the 
advantage of making no appeal to any experimental results other than the fundamental 
frequencies of benzene, and the van der Waals radii of carbon and hydrogen. According 
to this theory V(z,  . . . . . 236) may be regarded as the sum of two sets of terms. The first 
set measures the lack of planarity of the three bonds around every carbon atom in the 
skeleton of the molecule; the second set may be interpreted as measuring the torsion 
around each of the C-C bonds. The precise form of these terms depends on whether the 
atoms concerned are carbon or hydrogen. For a carbon such as C(19) surrounded by other 
carbon atoms the lack-of-planarity term in V amounts to 

'29. 

* * c1> 
For a carbon atom such as C(14) which has one hydrogen as neighbour the corresponding 

term involves the C-C and the C-H distance (a and b respectively). It is 

. (2) 

For a bond such as C(ls)-C(19, entirely surrounded by other carbon atoms, the torsion term 
is 

(3) 

For a bond such as C(1)-C(15) where there is one neighbouring hydrogen atom, the torsion 
term is 

2 a - z2 + z18 - z14 + (1 -;).I) . . . . . (4) 

Finally, for a bond such as C(,)-Ch) surrounded by two hydrogen atoms, the torsion term is 

The complete expression for V is the sum of terms (1)-(5) for each carbon atom and for 
each carbon-carbon bond. The appropriate 
numerical values of the parameters are : 

There are altogether 48 such squared terms. 

a = 1-40 A, b = 1.08 A, k ,  = 0-1474 x lo5 dynes cm.-l, 

k2 = 0.0551 x lo5 dynes cm.-l . . . . . . . . . . (6) 
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We have still to discuss the displacements z6, z7, 228, zZg. Viewed along the molecular 
plane in the direction of the axis of symmetry the overcrowded region must resemble 
Fig. 1,  in which the horizontal line represents the undistorted molecule, and in which one 
half of the molecule has been deflected above the original plane, and the other half below 
it. This value is about the 
shortest carbon-carbon distance found in organic molecules, and is identical with the 
corresponding distance in 3 : &benzophenanthrene, recently studied by Herbstein and 
Schmidt (J., 1954,3302). It suggests that  we may take the van der Waals radius of carbon 
in this somewhat compressed system as 1.5 A. We should then expect the C(,1--Hbs, 
distance to be about 1.5 + 1.2 = 2.7 A. Now the undistorted c(6)+7) distance, represented 
by A-B in Fig. 1 , will be about 1-4 A, and the C(6>-H(28) and C(7)-H(29) bond lengths are 1-08 A. 
Simple trigonometry shows that under these conditions z6 = -z7 = 1.32 tf, 228 = -z29 = 
1.36 A. 

The c(6)<(7) distance is found by McIntosh et al. to be 3.0 A. 

These are the final values which we have adopted. 

FIG. 1. The overcrowded region. 

Our problem is now very simple : i t  is to find the minimum value of V(z ,  . . . . . zZ6) with 
the above values for z6, z7, 228, and 229. We must therefore put W/&, = 0 for all the re- 
maining z,. But the set reduces to 16 on 
account of the molecular symmetry according to which the right half of (I) is displaced 
upwards and the left half symmetrically downwards. The values of 2, which satisfy these con- 
ditions are shown in the Table, all displacements being measured in A. I t  will be noticed that 

This provides us with a set of 32 linear equations. 

Calculated and experimental displacements (values in parentheses are assumed). 
Carbon atoms 

numbered according to 

1 1 2 
2 d 1 
3 1' 14 
4 2' 13 
5 3' 12 
6 4' 1 1  

14 10 3 
15 1 1  2a 
16 3 14a 
17 4 1 Od 
18 12 1 oc 

( l a )  (Ib) (Ic) 

9 

"?r 2, - ep, 

1-98, 0.09 
0.63, -0.07 

1-62, 0.80 
1-96, 1.31 
1.85, 1-53 

(1.32) 1-15 

0-33, 0-03 
1-12, 0.43 
0.85, 0-48 
0.27, 0-09 

0.118 -0.06 

Expt. AY 
-0.15 -0.08 

0 -0.09 
0.78 -0.02 
1.45 0.14 
1-71 0.18 
1-20 0.05 

-0.16 -0.10 
0.02 -0.01 
0.40 -0.03 
0.55 0.07 
0.20 0.11 

Hydrogen atoms 
numbered according to 

23 1 2 0-61, 
24 2 1 1.16, 
25 1' 14 1-79, 
26 2' 13 2-36, 

( :a)  ( I b )  ( 1 4  2, 

27 3' 12 2-19; 

36 10 3 0.20, 
28 4' 1 1  (1.36) 

some of these displacements are quite large, of the order of 2 A. But since the displacements 
of different atoms vary smoothly from atom to atom, the apparently large displacements 
do not destroy the validity of our potential function. 

Fig. 2 shows the displaced molecule, according to our calculations, when viewed along 
the original molecular plane. Comparison of this with Fig. 5 in the paper b McIntosh, 

accuracy is almost quantitative, as may be seen as follows. It is not possible, from the 
X-ray analysis, to tell which would have been the basic plane from which we have measured 

Robertson, and Vand shows that our description is qualitatively correct. J owever the 
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our z-displacements. But Professor Robertson has been kind enough to draw what he calls 
a medium plane through the molecule, and has measured the perpendicular displacements 
of the carbon atoms from this plane. (We cannot yet say anything about the hydrogen 
atoms, which are not experimentally resolved : our comparisons therefore are solely for 
the positions of the carbon atoms.) Trial-and-error suggests that the plane which Robert- 
son has chosen for this purpose is defined by its trace A-A' in Fig. 2,  the common line of 
this plane and the basic plane X-X' being the two-fold axis of symmetry of the molecule. 
We must therefore convert our 2,-values into corresponding displacements from A-A' 
instead of from X-X'. To the accuracy which is warranted by our whole analysis this may 
be achieved by replacing z, by (z, - Op,), where 8 = angle between A-A' and X-X',  and 
pr is the axial distance of atom C, from the axis of symmetry. These " reduced displace- 
ments " are also shown in the Table, where they are compared with the experimental 
values. The differences A, shown are all satisfactorily small. When it is recalled that 
Robertson estimates his accuracy as of the order 0-1 to 0-2 A, the agreement is all that 

FIG. 2. T h e  dibenzophenanthrene rnolecirle when projected in a direction perpendicular fo the axis of 
symnzet ry  . 

The figures denote the numbers ( r )  of the atoms and the small circles show their calculated 
displacements (zr). 8 = 0.24 radian. 

could be desired ; for the maximum A, is only 0.18 A, and the mean A, is only 0.08 A. 
The numerical value of 8 to give the best fit has been taken to be 0.24 radian (13" 45'). 

The agreement represented in the Table is almost too good ; for the molecular-orbital 
calculations of Senent (Zoc. cit.) show that the bond orders of the outer, or exposed, bonds 
C(13)-(&4), C(,)--C@, (&)-C(4), C(ll)-C(12), and C@)-C(ld are all rather larger than the average 
benzene order (1.746, 1.764, 1-764, 1.710, 1-710, respectively, to  be compared with benzene 
1-667). This will lead to a shortening of these bonds, and therefore to  a partial opening- 
out of the molecule, within its own molecular plane. As a result the distance A-B in Fig. 1 
is likely to be rather greater than the value 1.40 A which we assumed on the basis of five 
regular hexagons. This would tend to reduce the magnitudes of the displacements z, 
which were needed to relieve the overcrowding. It seems likely that the chief effect of all 
this would be to diminish all calculated z, in such a way that the angle 0 was reduced with- 
out an equivalent decrease in the " reduced displacements." But in no case should we 
expect this effect to be large, and it is not possible to deal with it properly until the experi- 
mental values of the bond lengths have been determined with greater precision than at 
present. 

This will We can use the zr values of the Table to estimate the energy of deformation. 
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consist of two parts : the van der Waals repulsive overlap energy due to the closeness of 
the four overcrowded atoms C(,l, C(,), H(28), and together with the energy required to 
distort the molecular framework. The second of these energies is identical with the loss of 
x-electron resonance energy and the energy of bending the a-electron bonds. I t  is measured 
by the value of V(z, . . . . . z,,) when we substitute the equilibrium values of the zr. Now 
since V is a homogeneous polynomial of degree 2, it follows that 

In equilibrium all aV/az, = 0 except for the four overcrowded atoms. 
of distortion is given quite simply by 

Thus the energy 

av av 
2 - + 228 - 

dz, azzs 

This amounts to 0-77 ev = 17.9 kcal. mole-l. The first of the strain-energy terms is less 
easy to estimate, for we know practically nothing about the magnitudes of these repulsive 
forces between non-bonded atoms. Since they are believed to come into operation very 
suddenly as the internuclear separation is reduced, and then to increase rapidly, it seems 
probable that they will contribute rather less than the deformation energy terms; for if 
the repulsive terms were larger than the deformation terms, we could reduce the total 
strain energy by increasing the atomic displacements. This is because the deformation 
energy varies only as the square of the z, values, but the repulsive forces vary as some higher 
power such as the inverse twelfth power of the distance. We are inclined to think that a 
value of the order of 10 kcal. mole-l is likely. Then the total strain energy would be about 
28 kcal. mole-l and the resonance energy for the molecule (calculated by Senent, Zoc. ci t . ,  
to have the value 162 kcal. mole-') would have to be reduced by this amount. In view of 
our ignorance of the magnitude of the repulsive forces, no great reliance should be placed 
on this value. But it is likely to be correct as regards order of magnitude. The fact that 
it is so small in relation to the deformations z, shows how relatively easy i t  is to build up 
quite large displacements in aromatic molecules of this sort by a series of small distortions 
around each of the carbon atoms of the molecular framework. 

We acknowledge with great thanks much helpful correspondence with Professor J. M. 
Robertson, and also his kindness in providing us with the observed displacements for the Table. 
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